4.6 Article

Protein S multimers and monomers each have direct anticoagulant activity

Journal

JOURNAL OF THROMBOSIS AND HAEMOSTASIS
Volume 4, Issue 2, Pages 385-391

Publisher

WILEY
DOI: 10.1111/j.1538-7836.2006.01743.x

Keywords

analytical ultracentrifugation; anticoagulant activity; multimeric protein; protein S; prothrombinase

Funding

  1. NCRR NIH HHS [M01 RR00833] Funding Source: Medline
  2. NHLBI NIH HHS [R01 HL70002] Funding Source: Medline

Ask authors/readers for more resources

Background and Objectives: Plasma protein S (PS) is an essential anticoagulant that has activated protein C-independent, direct anticoagulant activity (PS-direct). It was reported that monomeric purified PS has poor PS-direct and that a subpopulation of multimeric purified PS has high PS-direct and high affinity for phospholipids. We independently examined the relative PS-direct and affinity for phospholipids of monomeric and multimeric PS and we obtained contrasting results. Methods and Results: Unpurified recombinant protein S (rPS) was monomeric and had PS-direct potency similar to that of both PS in plasma and multimeric affinity-purified PS, as measured in plasma assays for PS-direct and in thrombin-generation assays. Multimers of unpurified rPS were not induced by ethylenediaminetetraacetic acid (EDTA), pH 2.5, NaSCN, or barium adsorption/elution. Multimers were induced by chromatography in the presence of EDTA and thus may be concentration-dependent. In contrast to a different report, monomers, dimers, trimers, and higher-order PS forms were clearly separated in sedimentation velocity experiments and multimers were not dissociated by adding Ca2+. Active plasma-derived and recombinant immunoaffinity-purified PS were fractionated into monomers and multimers. On a mass basis, monomers and multimers had similar specific PS-direct and ability to compete with prothrombinase components (factors Xa/Va) for limiting phospholipids. FXa ligand blotted to both monomers and multimers. Conclusions: Plasma PS-direct is similar to that of affinity-purified PS and unpurified rPS. Under our conditions, monomeric and multimeric PS have similar PS-direct and ability to compete for phospholipids. Discordant earlier findings are likely due to loss of PS-direct during conventional purification procedures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available