4.3 Article

Development and application of fluorescence in situ hybridization (FISH) method for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella in cultured and natural seawater

Journal

FISHERIES SCIENCE
Volume 72, Issue 1, Pages 77-82

Publisher

SPRINGER JAPAN KK
DOI: 10.1111/j.1444-2906.2006.01119.x

Keywords

Alexandrium tamarense; Alexandrium catenella; FISH (fluorescence in situ hybridization); paralytic shellfish poisoning; species-specific identification; toxic dinoflagellate

Categories

Ask authors/readers for more resources

The toxic dinoflagellates Alexandrium tamarense (Lebour) Balech and A. catenella (Whedon and Kofoid) Balech produce potent neurotoxins, such as saxitoxin and gonyautoxin and have been mainly responsible for paralytic shellfish poisoning (PSP) in Japan. To prevent a negative effect on the fishery industry, it is necessary to identify these toxic species precisely and rapidly before and during the bloom. In this paper, a rapid and simple protocol of a fluorescence in situ hybridization (FISH) method using ribosomal RNA (rRNA)-targeted probes has been established for identifying the cultured strains and natural cells of A. tamarense and A. catenella. Using the FISH method established in this study, it was possible to identify these toxic species species-specifically and rapidly, within 30 min. The procedure of detection constituted three steps: (i) fixation/dehydration; (ii) hybridization; and (iii) washing; this made the identification simple. Moreover, this method did not require either special techniques or equipment, and the cost for detection was low. The specificity, rapidity, and simplicity of the developed method suggest that it might be useful for routine monitoring of these toxic microalgae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available