4.7 Article

Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive

Journal

MOLECULAR THERAPY
Volume 13, Issue 2, Pages 289-300

Publisher

CELL PRESS
DOI: 10.1016/j.ymthe.2005.09.015

Keywords

autoimmune disease; suppression; dendritic cells; exosomes; Fas ligand

Funding

  1. NHLBI NIH HHS [HL 75512, HL 77545] Funding Source: Medline
  2. NIAID NIH HHS [AI 56374] Funding Source: Medline

Ask authors/readers for more resources

We previously have demonstrated the ability of primary murine bone marrow-derived DC (BMDC), genetically modified by adenoviral infection to express FasL, to inhibit progression of established collagen-induced arthritis (CIA) following systemic delivery. Here we demonstrate that exosomes derived from genetically modified BM-DC expressing FasL are able to inhibit inflammation in a murine footpad model of delayed-type hypersensitivity (DTH). Local administration of exosomes derived from DC expressing FasL (Exo/FasL) as well as the parental DC/FasL resulted in a significant reduction in swelling in both the treated and the untreated distal paw. However, both the DC/FasL and the Exo/FasL were unable to suppress the DTH response in Ipr (Fas-deficient) mice. Gene transfer of FasL to BM-DC from gld (FasL-deficient) mice resulted in restoration of the ability of DC as well as DC-derived exosomes to suppress DTH. The ability of DC-derived exosomes and DC to suppress DTH responses was antigen specific and MHC class 11 dependent, but class I independent. The injected exosomes were found to be internalized into CD11c(+) cells at the site of injection and in the draining popliteal lymph node. Systemic injection of exosome/FasL into mice with established CIA resulted in significant disease amelioration. These results demonstrate that both systemic and local administration of exosomes derived from FasL-expressing DC are able to suppress antigen-specific immune responses through an MHC class II-dependent pathway, resulting in effective and sustained treatment of established collagen-induced arthritis and suppression of the DTH inflammatory response. These results suggest that DC/FasL-derived exosomes could be used clinically for the treatment of inflammatory and autoimmune diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available