4.5 Article

Guided tissue regeneration for using a chitosan membrane: An experimental study in rats

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 76A, Issue 2, Pages 408-415

Publisher

WILEY
DOI: 10.1002/jbm.a.30534

Keywords

guided tissue regeneration; chitosan membrane; osteogensis

Ask authors/readers for more resources

Barrier membranes are employed clinically to deflect the growth of gingival tissues away from root surface. They provide an isolated space over the regions with the defective tissues that allow the relatively slow growing periodontal ligament fibroblasts to be repopulated onto the root surface. Several makes of bioabsorbable membranes are now commercially available. In this study, we have employed chitosan as barrier membrane material and evaluated it for a guided tissue regeneration application. Three types of chitosan membranes: Chi-NaOH, Chi-Na5P3O10, and Chi-Na2SO3 (each was gelated by NaOH, crosslinked by Na5P3O10, and Na2SO3, respectively), were prepared to be evaluated by the following categories: the mechanical strength to create an effective space, the rapid rate to reach hydrolytic equilibrium in phosphate-buffered solution, and the ease of clinical manipulative operations. Consequently, standardized, transosseous and critical sized skull defects were made in adult rats and the defective regions were covered with the specifically prepared chitosan membranes. After 4 weeks of recovering, varying degrees of bone healing were observed beneath the chitosan membranes in comparison to the control group. The chitosan covered regions showed a clear boundary space between connective tissues and bony tissues. Apparently, this process resulted in a good cell occlusion and beneficial osteogensis effect to the bone. As for the control group, the bone defect was filled with connective tissue, and a destruction of the integrity of newly formed bone was observed. Among the chitosan membranes tested in this study, Chi-NaOH membrane provided a higher percentage of new bone formation than those from the Chi-Na5P3O10, and Chi-Na2SO3 families. (c) 2005 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available