4.4 Article

Magnetic resonance imaging of the behaviour of oil-in-water emulsions in the gastric lumen of man

Journal

BRITISH JOURNAL OF NUTRITION
Volume 95, Issue 2, Pages 331-339

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1079/BJN20051628

Keywords

magnetic resonance imaging; echo-planar imaging; stomach; man

Funding

  1. Biotechnology and Biological Sciences Research Council [D14043] Funding Source: Medline

Ask authors/readers for more resources

Pre-processed foods often contain a high percentage of lipid, present as emulsions stabilised with various surface-active agents. The acidic gastric environment can affect the behaviour of such emulsions, modifying the lipid spatial distribution and, in turn, the rate of gastric emptying and nutrient delivery to the gut. The aim of the present study was to use echo-planar magnetic resonance imaging (EPI) to determine the behaviour of model olive oil emulsions during gastric processing. Six healthy male volunteers were intubated nasogastrically on two separate occasions and fed 500 ml 15 % (w/w) olive oil-in-water, surfactant-stabilised emulsions designed to have identical droplet size distribution and which were either stable or unstable under gastric acid conditions. EPI was used to assess the oil fraction of the intragastric emulsions, gastric emptying and to visualise the spatial distribution of the oil at 10, 30 and 50 min postprandially. The in vivo imaging measurements of the oil volume fraction of the emulsions correlated well (r 0.66, acid-stable; r 0.52, acid-unstable) with that assayed in the gastric aspirates. Compared with the acid-stable emulsion, the acid-unstable emulsion in the gastric lumen rapidly separated into lipid-depleted 'aqueous' and lipid layers. Phase separation in the acid-unstable meal allowed the oil-depleted component to empty first and more rapidly than the stable emulsion as determined by the gastric emptying curves. These pilot data suggest that gastric processing and emptying of high-fat foods could be manipulated by careful choice of emulsifier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available