4.6 Article

Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture

Journal

OSTEOARTHRITIS AND CARTILAGE
Volume 14, Issue 2, Pages 179-189

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.joca.2005.09.002

Keywords

mesenchymal stem cells; agarose; mechanical properties; chondrogenesis; chondrocyte; cartilage

Funding

  1. NIAMS NIH HHS [Z01 AR41131] Funding Source: Medline

Ask authors/readers for more resources

Background. The developmental history of the chondrocyte results in a cell whose biosynthetic activities are optimized to maintain the concentration and organization of a mechanically functional cartilaginous extracellular matrix. While useful for cartilage tissue engineering studies, the limited supply of healthy autologous chondrocytes may preclude their clinical use. Consequently, multipotential mesenchymal stem cells (MSCs) have been proposed as an alternative cell source. Objective: While MSCs undergo chondrogenesis, few studies have assessed the mechanical integrity of their forming matrix. Furthermore, efficiency of matrix formation must be determined in comparison to healthy chondrocytes from the same donor. Given the scarcity of healthy human tissue, this study determined the feasibility of isolating bovine chondrocytes and MSCs, and examined their long-term maturation in three-dimensional agarose culture. Experimental design: Bovine MSCs were seeded in agarose and induced to undergo chondrogenesis. Mechanical and biochemical properties of MSC-laden constructs were monitored over a 10-week period and compared to those of chondrocytes derived from the same group of animals maintained similarly. Results: Our results show that while chondrogenesis does occur in MSC-laden hydrogels, the amount of the forming matrix and measures of its mechanical properties are lower than that produced by chondrocytes under the same conditions. Furthermore, some important properties, particularly glycosaminoglycan content and equilibrium modulus, plateau with time in MSC-laden constructs, suggesting that diminished capacity is not the result of delayed differentiation. Conclusions: These findings suggest that while MSCs do generate constructs with substantial cartilaginous properties, further optimization must be done to achieve levels similar to those produced by chondrocytes. Published by Elsevier Ltd on behalf of OsteoArthritis Research Society International.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available