4.6 Article

Effect of cell growth on hepatitis C virus (HCV) replication and a mechanism of cell confluence-based inhibition of HCV RNA and protein expression

Journal

JOURNAL OF VIROLOGY
Volume 80, Issue 3, Pages 1181-1190

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.80.3.1181-1190.2006

Keywords

-

Categories

Ask authors/readers for more resources

An intimate relationship between hepatitis C virus (HCV) replication and the physiological state of the host liver cells has been reported. In particular, a highly reproducible and reversible inhibitory effect of high cell density on HCV replication was observed: high levels of HCV RNA and protein can be detected in actively growing cells but decline sharply when the replicon cells reach confluence. Arrested cell growth of confluent cells has been proposed to be responsible for the inhibitory effect. Indeed, other means of arresting cell growth have also been shown to inhibit HCV replication. Here, we report a detailed study of the effect of cell growth and confluence on HCV replication using a flow cytometry-based assay that is not biased against cytostasis and reduced cell number. Although we readily reproduced the inhibitory effect of cell confluence on HCV replication, we found no evidence of inhibition by serum starvation, which arrested cell growth as expected. In addition, we observed no inhibitory effect by agents that perturb the cell cycle. Instead, our results suggest that the reduced intracellular pools of nucleosides account for the suppression of HCV expression in confluent cells, possibly through the shutoff of the de novo nucleoside biosynthetic pathway when cells become confluent. Adding exogenous uridine and cytidine to the culture medium restored HCV replication and expression in confluent cells. These results suggest that cell growth arrest is not sufficient for HCV replicon inhibition and reveal a mechanism for HCV RNA inhibition by cell confluence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available