4.7 Article

The roles of toughness and cohesive strength on crack deflection at interfaces

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 54, Issue 2, Pages 266-287

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2005.09.002

Keywords

crack deflection; crack penetration; interfacial fracture; toughness; cohesive strength

Ask authors/readers for more resources

in order to design composites and laminated materials, it is necessary to understand the issues that govern crack deflection and crack penetration at interfaces. Historically, models of crack deflection have been developed using either a strength-based or an energy-based fracture criterion. However, in general, crack propagation depends on both strength and toughness. Therefore, in this paper, crack deflection has been studied using a cohesive-zone model which incorporates both strength and toughness parameters simultaneously. Under appropriate limiting conditions, this model reproduces earlier results that were based on either strength or energy considerations alone. However, the general model reveals a number of interesting results. Of particular note is the apparent absence of any lower bound for the ratio of the substrate to interface toughness to guarantee crack penetration. It appears that, no matter how tough an interface is, crack deflection can always be induced if the strength of the interface is low enough compared to the strength of the substrate. This may be of significance for biological applications where brittle organic matrices can be bonded by relatively tough organic layers. Conversely, it appears that there is a lower bound for the ratio of the substrate strength to interfacial strength, below which penetration is guaranteed no matter how brittle the interface. Finally, it is noted that the effect of modulus mismatch on crack deflection is very sensitive to the mixed-mode failure criterion for the interface, particularly if the cracked layer is much stiffer than the substrate. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available