4.8 Article

Differential phosphoprotein mapping in cancer cells using protein microarrays produced from 2-D liquid fractionation

Journal

ANALYTICAL CHEMISTRY
Volume 78, Issue 3, Pages 702-710

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0511243

Keywords

-

Funding

  1. NCI NIH HHS [R01CA106402] Funding Source: Medline
  2. NIGMS NIH HHS [R01GM49500] Funding Source: Medline

Ask authors/readers for more resources

A combination of protein microarrays and two-dimensional liquid-phase separation of proteins has been used for global profiling of the phosphoproteome in human breast cancer cells. This method has been applied to study changes in phosphorylation profile resulting from treatment of the cancer cells with PD173074, a known receptor tyrosine kinase inhibitor. The proteins separated by 2-D liquid-phase separation were arrayed on epoxy-coated glass slides and first screened for phosphorylation using fluorescent Pro-Q Diamond stain. The candidate proteins were then identified using MALDI/ESI MS/MS analysis. Further, validation was achieved by immunoblot analysis using anti-phosphotyrosine antibodies. A dynamic range of similar to 100 was achieved on the microarray when beta-casein was used as a standard protein for obtaining quantitative data. Importantly, the power of this method lies in its ability to identify a large group of proteins in a single experiment that are coregulated in their posttranslational modifications, upon treatment with the inhibitor. Since proteins are known to form interacting circuits that eventually lead to various signaling events, detection of such global phosphorylation profiles might enable delineation of functional pathways that play an important role during cancer initiation and progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available