4.3 Article

Defective neuromuscular synaptogenesis in mice expressing constitutively active ErbB2 in skeletal muscle fibers

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 31, Issue 2, Pages 334-345

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2005.10.004

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [GM065797] Funding Source: Medline

Ask authors/readers for more resources

We overexpressed a constitutively active form of the neuregulin receptor ErbB2 (CAErbB2) in skeletal muscle fibers in vivo and in vitro by tetracycline-inducible expression. Surprisingly, CAErbB2 expression during embryonic development was lethal and impaired synaptogenesis yielding a phenotype with loss of synaptic contacts, extensive axonal sprouting, and diffuse distribution of acetylcholine receptor (AChR) transcripts, reminiscent of agrin-deficient mice. CAErbB2 expression in cultured myotubes inhibited the formation and maintenance of agrin-induced AChR clusters, suggesting a muscle- and not a nerve-origin for the defect in CAErbB2-expressing mice. Levels of tyrosine phosphorylated MuSK, the signaling component of the agrin receptor, were similar, while tyrosine phosphorylation of AChR beta subunits was dramatically reduced in CAErbB2-expressing embryos relative to controls. Thus, a gain-of-function manipulation of ErbB2 signaling pathways renders an agrin-deficient-like phenotype that uncouples MuSK and AChR tyrosine phosphorylation. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available