4.3 Article

The state of the actin cytoskeleton determines its association with gephyrin: Role of enaNASP family members

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 31, Issue 2, Pages 376-386

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2005.11.004

Keywords

gephyrin; actin; ena; VASP; inhibitory synapses; cytoskeleton; alkaloid

Categories

Ask authors/readers for more resources

The role the cytoskeleton plays in generating and/or maintaining gephyrin-dependent receptor clusters at inhibitory synapses is poorly understood. Here, the effects of actin cytoskeleton disruption were investigated in eGFP-gephyrin-transfected cells and hippocampal neurons. While gephyrin was not associated with microfilaments in transfected cells, it colocalized with G-actin and cytochalasin-D-induced F-actin patches. The linker region between the MoeA and MogA homology domains of gephyrin was required for colocalization with F-actin patches and for the binding of gephyrin to ena/VASP, an actin anti-capping factor that, in vitro, caused gephyrin binding to polymerized actin. In hippocampal neurons, treatment with cytocha- lasin D resulted in the redistribution of the neuronal ena/VASP homologue Mena into actin patches and, at early stages of development, a reduction in the number of gephyrin clusters. Our data suggest that Mena binding to F-actin allows for gephyrin recruitment to the leading edge of uncapped actin filaments. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available