4.6 Article

Structural investigations on lipid nanoparticles containing high amounts of lecithin

Journal

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 27, Issue 2-3, Pages 226-236

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejps.2005.10.004

Keywords

solid lipid nanoparticles; nuclear magnetic resonance; small angle X-ray scattering; structural analysis; transmission electron microscopy

Ask authors/readers for more resources

Solid lipid nanoparticles (SLN), an alternative colloidal drug delivery system to polymer nanoparticles, emulsions and liposomes, possess inherent low incorporation rates resulting from the crystalline structure of the solid lipid. To increase the drug loading capacity of SLN, matrix modification by incorporation of the amphiphilic lipid lecithin within the lipid matrices has been proposed as a promising alternative. The objective of this work is to investigate the effects of the lecithin on the microstructure of matrix modified SLN. In addition, these systems were checked for the existence of aggregates like mixed micelles, liposomes, etc., which could possibly be formed by lecithin leakage into the aqueous phase during the preparation process. For this purpose, laser diffraction, photon correlation spectroscopy (PCS), small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) were performed to investigate the structure, mobility, and molecular environment of the compounds. Lecithin incorporation within the lipid matrices resulted in a concentration dependent decrease in particle size up to a critical concentration of 30%. Lecithin incorporation up to 50% was investigated but caused no further particle size decrease. TEM revealed anisometrical and crystalline platelets of ellipsoidal to disc-like shape. Furthermore, SAXS and TEM showed no signs of lecithin and nonionic emulsifier derived aggregates in the aqueous phase. This points in agreement with NMR measurements to a strong attachment of both substances to the SLN surfaces. The proposed structure of the particles after melt emulsification consists of two different layers: a crystalline triglyceride-rich core is covered in dependence of the lecithin content either by a monomolecular or multimolecular lecithin/Solutol(R) HS15 (SOL) layer. (C) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available