4.6 Article

The development of polymeric devices as dielectrophoretic separators and concentrators

Journal

MRS BULLETIN
Volume 31, Issue 2, Pages 120-124

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/mrs2006.26

Keywords

biomedical; dielectrophoresis; fluidics; microscale; polymer

Ask authors/readers for more resources

Efficient and reliable particle separators and concentrators are needed to support a wide range of analytical functions including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. The advent of lab-on-a-chip devices based on the phenomenon of dielectrophoresis offers advantages that can meet several of the challenges associated with cell sorting and detection. The majority of the devices presented in the scientific literature have used glass-based devices for these applications, but there has been recent activity that indicates that polymer-based devices can operate as effectively as their glass progenitors. Processing and operational advantages motivate the transition from glass and silicon to polymer microdevices: mechanical robustness, economy of scale, ease of thermotorming and mass manufacturing, and the availability of numerous innate chemical polymer compositions for tailoring performance. We present here a summary of the developments toward, and results obtained from, these polymeric dielectrophoretic devices in the selective trapping, concentration, and gated release of a range of biological organisms and particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available