4.7 Article Proceedings Paper

Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area

Journal

AGRICULTURE ECOSYSTEMS & ENVIRONMENT
Volume 112, Issue 2-3, Pages 186-191

Publisher

ELSEVIER
DOI: 10.1016/j.agee.2005.08.018

Keywords

cattle overwintering; emissions; nitrous oxide; carbon dioxide; soil compaction

Ask authors/readers for more resources

Excretal returns and physical disturbance due to treading can greatly influence nitrogen flows in grazed pastures. Dung and urine depositions stimulate microbial transformations, while soil compaction and poaching change the physical environment in which these transformations take place. In this study, a cattle overwintering area in the Southwest Czech Republic was characterized with respect to bulk density, porosity, water-filled pore space (WFPS), organic C, total N, pH, microbial biomass C and denitrifying enzyme activity (DEA). Carbon dioxide and nitrous oxide (N2O) emissions were measured on four different dates between October 2001 and May 2002. Sampling took place along a transect away from an open barn with access to feed. Soil chemical and biological properties showed that deposition of excreta declined with distance from the barn. In contrast, N2O emissions were highest at intermediate positions along the transect. At the section with the greatest animal impact, the ratio of N-2 versus N2O produced was five-fold higher, and the soil pH was 2 units higher, compared to the section with the least animal impact, which indicated that soil conditions favoured production of N-2 rather than N2O in the area where excretal returns and treading was intense. A multiple linear regression was conducted using data from the last sampling. There were significant effects of WFPS and pH on log-transformed N2O emissions, while effects of NH4+ and NO3-, and interactions between NH4+ and, respectively, WFPS and pH were nearly significant. The observations indicate that, whereas pasture management to achieve a better distribution of animal impact may improve N retention in the soil, it is not clear whether this will reduce N20 emissions. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available