4.5 Article

Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels

Journal

JOURNAL OF DRUG TARGETING
Volume 14, Issue 2, Pages 87-95

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10611860600635608

Keywords

nanogels; HCFU; polysorbate 80; pharmacoscintigraphy; brain delivery

Ask authors/readers for more resources

Random copolymeric micelles composed of N -isopropylacrylamide (NIPAAM) and N-vinylpyrrolidone (VP) cross-linked with N,N'-methylenebisacrylamide (MBA) have been used as nanogel carriers to encapsulate N -hexylcarbamoyl-5-fluorouracil (HCFU), a prodrug of 5-FU, and have been targeted to brain tissue across blood-brain barrier (BBB) after coating with polysorbate 80. Accumulation of nanogel particles in the brain and other tissues of strain A mice had been monitored by radiolabeling of nanogels with Tc-99m. Gamma Scintigraphic technique was also performed to see the distribution of Tc-99m labeled nanogels in the brain. The retention time in blood appeared to be slightly longer for coated nanogels than that of uncoated nanogels though the accumulation of coated nanogels in the RES was more or less same as that of uncoated nanogels. The blood however had almost double accumulation of polysorbate 80 coated nanogels in the initial 5 min compared to that shown by uncoated nanogels. We speculate that coating of nanogels with polysorbate 80 alters the surface properties of nanogels, which results in relatively higher uptake in the brain tissue. The studies revealed that a large portion of Tc-99m labeled HCFU loaded nanogels are accumulated in the RES (lung, liver and spleen). The accumulation of the labeled nanogels in the brain, however, is much less compared to RES and it has been found that while an amount of uncoated labeled nanogels was found to be 0.18% of the injected dose, it increased to 0.52% on coating with polysorbate 80. The optimal amount of polysorbate 80 added to nanogels for the maximum delivery of particles to brain was found to be 1% w/w. These results were further supported by the gamma scintigrams of New Zealand rabbits. Thus, the present nanogel system has opened a new avenue for poorly soluble drugs to be targeted to brain by coating the particles with polysorbate 80.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available