4.5 Review

Regulation of dynamic events by microfilaments during oocyte maturation and fertilization

Journal

REPRODUCTION
Volume 131, Issue 2, Pages 193-205

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1530/rep.1.00847

Keywords

-

Funding

  1. NICHD NIH HHS [R03 HD43829-02] Funding Source: Medline

Ask authors/readers for more resources

Actin filaments (microfilaments) regulate various dynamic events during oocyte meiotic maturation and fertilization. In most species, microfilaments are not required for germinal vesicle breakdown and meiotic spindle formation, but they mediate peripheral nucleus (chromosome) migration, cortical spindle anchorage, homologous chromosome separation, cortex development/maintenance, polarity establishment, and first polar body emission during oocyte maturation. Peripheral cortical granule migration is controlled by microfilaments, while mitochondria movement is mediated by microtubules. During fertilization, microfilaments are involved in sperm incorporation, spindle rotation (mouse), cortical granule exocytosis, second polar body emission and cleavage ring formation, but are not required for pronuclear apposition (except for the mouse). Many of the events are driven by the dynamic interactions between myosin and actin filaments whose polymerization is regulated by RhoA, Cdc42, Arp2/3 and other signaling molecules. Studies have also shown that oocyte cortex organization and polarity formation mediated by actin filaments are regulated by mitogen-activated protein kinase, myosin light-chain kinase, protein kinase C and its substrate p-MARKS as well as PAR proteins. The completion of several dynamic events, including homologous chromosome separation, spindle anchorage, spindle rotation, vesicle organelle transport and pronuclear apposition (mouse), requires interactions between microfilaments and microtubules, but determination of how the two systems of the cytoskeleton precisely cross-link, and which proteins link microfilaments to microtubules to perform functions in eggs, requires further studies. Finally, the meaning of microfilament-mediated oocyte polarity versus embryo polarity and embryo development in different species (Drosophila, Xenopus and mouse) is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available