4.6 Article

Temperature-independent strain sensor made from tapered holey optical fiber

Journal

OPTICS LETTERS
Volume 31, Issue 3, Pages 305-307

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OL.31.000305

Keywords

-

Categories

Ask authors/readers for more resources

A large-mode-area holey fiber was tapered to a point in which the airholes collapsed, and its dependence on temperature and strain was studied. The transmission spectrum of such a fiber exhibits a series of peaks owing to the interference between the modes of the solid taper waist. We found that the interference peaks shifted to shorter wavelengths as the taper was elongated. However, the peaks were insensitive to temperature. The fabrication and advantages of our novel wavelength-encoded temperature-independent strain sensor compared with other optical fiber strain sensors are discussed. (c) 2006 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available