4.7 Article Proceedings Paper

Power scheduling of universal decentralized estimation in sensor networks

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 54, Issue 2, Pages 413-422

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2005.861898

Keywords

distributed estimation; inhomogeneous quantization; power scheduling; sensor networks

Ask authors/readers for more resources

We consider the optimal power scheduling problem for the decentralized estimation of a noise-corrupted deterministic signal in an inhomogeneous sensor network. Sensor observations are first quantized into discrete messages, then transmitted to a fusion center where a final estimate is generated. Supposing that the sensors use a universal decentralized quantization/estimation scheme and an uncoded quadrature amplitude modulated (QAM) transmission strategy, we determine the optimal quantization and transmit power levels at local sensors so as to minimize the total transmit power, while ensuring a given mean squared error (mse) performance. The proposed power scheduling scheme suggests that the sensors with bad channels or poor observation qualities should decrease their quantization resolutions or simply become inactive in order to save power. For the remaining active sensors, their optimal quantization and transmit power levels are determined jointly by individual channel path losses, local observation noise variance, and the targeted mse performance. Numerical examples show that in inhomogeneous sensing environment, significant energy savings is possible when compared to the uniform quantization strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available