4.7 Article

An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2005.861548

Keywords

artificial immune system (AIS); clustering; pattern recognition; remote sensing; unsupervised classificationd

Ask authors/readers for more resources

A new method in computational intelligence namely artificial immune systems (AIS), which draw inspiration from the vertebrate immune system, have strong capabilities of pattern recognition. Even though AIS have been successfully utilized in several fields, few applications have been reported in remote sensing. Modern commercial imaging satellites, owing to their large volume of high-resolution imagery, offer greater opportunities for automated image analysis. Hence, we propose a novel unsupervised machine-learning algorithm namely unsupervised artificial immune classifier (UAIC) to perform remote sensing image classification. In addition to their nonlinear classification properties, UAIC possesses biological properties such as clonal selection, immune network, and immune memory. The implementation of UAIC comprises two steps: initially, the first clustering centers are acquired by randomly choosing from the input remote sensing image. Then, the classification task is carried out. This assigns each pixel to the class that maximizes stimulation between the antigen and the antibody. Subsequently, based on the class, the antibody population is evolved and the memory cell pool is updated by immune algorithms until the stopping criterion is met. The classification results are evaluated by comparing with four known algorithms: K-means, ISODATA, fuzzy K-means, and self-organizing map. It is shown that UAIC is an adaptive clustering algorithm, which outperforms other algorithms in all the three experiments we carried out.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available