4.5 Article

Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 4, Pages 1559-1565

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp055830j

Keywords

-

Ask authors/readers for more resources

N-doped TiO2 photocatalysts were prepared by pretreating the TiO2 precursor in NH3/ethanol fluid under supercritical conditions, denoted as TiO2N(SC). In contrast to the TiO2N(DC), obtained via direct calcination in which the N dopants were mainly present in the form of surface adsorbed NH3 molecules, most N dopants in the TiO2N(SC) were present in O-Ti-N and N-Ti-N nitrides, as confirmed by either the X-ray photoelectron spectroscopy (XPS) and or the Fourier transform infrared (FTIR) spectra. During liquid-phase oxidative degradation of phenol under irradiation with UV light characteristic of 365 nm, the TiO2N(SC) exhibited much higher activity than either the TiO2N(DC) or the TiO2(SC), i.e., the undoped TiO2 obtained under SCs. According to various characterizations including X-ray diffraction, transmission electron microscopy, FTIR, Brunauer-Emmett-Teller, XPS, and UV-vis diffuse reflectance spectra, the higher activity of the TiO2N(SC) could be attributed to its higher surface area, larger pore volume, well-crystallized anatase, and stronger absorbance of light with longer wavelength. Meanwhile, the OH species resulted from the nitridation of TiO2 could supply more HO center dot radicals, which were considered as powerful oxidants during phenol degradation. Furthermore, the electron-deficient nitrogen atoms in O-Ti-N nitrides could also account for the higher activity since it could inhibit the recombination between the photoinduced electrons and holes by capturing the photoinduced electrons. The activity of the Ti02N(SC) first increased and then decreased with the increase of the N-content. The TiO2N(SC)-1 with N/Ti molar ratio of 1.73% exhibited maximum activity, which was even much higher than P-25.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available