4.6 Article

Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography

Journal

OPTICS EXPRESS
Volume 14, Issue 3, Pages 1006-1020

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.14.001006

Keywords

-

Categories

Ask authors/readers for more resources

A numerical deconvolution method to cancel lateral defocus in Fourier domain optical coherence tomography (FD-OCT) is presented. This method uses a depth-dependent lateral point spread function and some approximations to design a deconvolution filter for the cancellation of lateral defocus. Improved lateral resolutions are theoretically estimated; consequently, the effect of lateral superresolution in this method is derived. The superresolution is experimentally confirmed by a razor blade test, and an intuitive physical interpretation of this effect is presented. The razor blade test also confirms that this method enhances the signal-to-noise ratio of OCT. This method is applied to OCT images of medical samples, in vivo human anterior eye segments, and exhibits its potential to cancel the defocusing of practical OCT images. The validity and restrictions involved in each approximation employed to design the deconvolution filter are discussed. A chromatic and a two-dimensional extensions of this method are also described. (c) 2006 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available