4.7 Article

Interpolating moving least-squares methods for fitting potential-energy surfaces: Further improvement of efficiency via cutoff strategies

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 124, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2162171

Keywords

-

Ask authors/readers for more resources

In standard applications of interpolating moving least squares (IMLS) for fitting a potential-energy surface (PES), all available ab initio points are used. Because remote ab initio points negligibly influence IMLS accuracy and increase IMLS time-to-solution, we present two methods to locally restrict the number of points included in a particular fit. The fixed radius cutoff (FRC) method includes ab initio points within a hypersphere of fixed radius. The density adaptive cutoff (DAC) method includes points within a hypersphere of variable radius depending on the point density. We test these methods by fitting a six-dimensional analytical PES for hydrogen peroxide. Both methods reduce the IMLS time-to-solution by about an order of magnitude relative to that when no cutoff method is used. The DAC method is more robust and efficient than the FRC method. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available