4.8 Article

Transposable elements have contributed to thousands of human proteins

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0510007103

Keywords

sequence similarity; mobile elements; genes; repeated sequences

Ask authors/readers for more resources

This is a report of many distant but significant protein sequence relationships between human proteins and transposable elements (TEs). The libraries of human repeated sequences contain the DNA sequences of many TEs. These were translated in all reading frames, ignoring stop coclons, and were used as amino acid sequence probes to search with BLASTP for similar sequences in a library of 25,193 human proteins. The probes show regions of significant amino acid sequence similarity to 1,950 different human genes, with an expectation of < 10(-3). In comparison with previous REPEATMASKER (institute for Systems Biology, Seattle) studies, these probes detect many more TE sequences in more human coding sequences with greater length than previous work using DNA sequences. If the criterion is opened, very many matches are found occurring on 4,653 different genes after correction for the number seen with random amino acid sequence probes. The processes that led to these extensive sets of sequence relationships between TEs and coding sequences of human genes have been a major source of variation and novel genes during evolution. This paper lists the number of sequence similarities seen by amino acid sequence comparison, which is surely an underestimate of the actual number of significant relationships. It appears that many of these are the result of past events of duplication of genes or gene regions, rather than a direct result of TE insertion. This report of observable relationships leaves to the future the functional implications as well as the detection of the events of TE insertion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available