4.5 Article

Electrophoretic mobility, zeta potential, and fixed charge density of bovine knee chondrocytes, methyl methacrylate-sulfopropyl methacrylate, polybutylcyanoacrylate, and solid lipid nanoparticles

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 5, Pages 2202-2208

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp056266f

Keywords

-

Ask authors/readers for more resources

The electrophoretic mobility and zeta potential of bovine knee chondrocytes (BKCs), methyl methacrylate-sulfopropyl methacrylate (MMA-SPM) nanoparticles (NPs), polybutylcyanoacrylate (PBCA) NPs, and solid lipid nanoparticles (SLNs) were investigated under the influences of Na+, K+, and Ca2+ with various ionic strengths. The fixed charge density in the surface layers of the four biocolloidal particles was estimated from the experimental mobility of capillary electrophoresis with a theory of soft charged colloids. The results revealed that, for a specific cationic species, the absolute values of the electrophoretic mobility, the zeta potential, and the fixed charge density decreased with an increase in ionic strength. For a constant ionic strength, the effect of ionic species on the reduction in the absolute values of the electrophoretic mobility, the zeta potential, and the fixed charge density followed the order Na+ > K+ > Ca2+ for the negatively charged BKCs, MMA-SPM NPs, and SLNs. The reverse order is true for the positively charged PBCA NPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available