4.7 Article

Three-dimensional structures of fibrillar Sm proteins:: Hfq and other Sm-like proteins

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 356, Issue 1, Pages 86-96

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.11.010

Keywords

RNA-binding protein; Sm-like (Lsm) protein; helical fibre; electron microscopy; FTIR

Ask authors/readers for more resources

Hfq is a nucleic acid-binding protein that functions as a global regulator of gene expression by virtue of its interactions with several small, non-coding RNA species. Originally identified as an Escherichia coli host factor required for RNA phage Q beta replication, Hfq is now known to post-transcriptionally regulate bacterial gene expression by modulating both mRNA stability and translational activity. Recently shown to be a member of the diverse Sm protein family, Hfq adopts the OB-like fold typical of other Sm and Sm-like (Lsm) proteins, and also assembles into toroidal homo-oligomers that bind single-stranded RNA. Similarities between the structures, functions, and evolution of Sm/Lsm proteins and Hfq are continually being discovered, and we now report an additional, unexpected biophysical property that is shared by Hfq and other Sm proteins: E. coli Hfq polymerizes into well-ordered fibres whose morphologies closely resemble those found for Sm-like archaeal proteins (SmAPs). However, the hierarchical assembly of these fibres is dissimilar: whereas SmAPs polymerize into polar tubes (and striated bundles of such tubes) by head-to-tail stacking of individual homo-heptamers, helical Hfq fibres are formed by cylindrical slab-like layers that consist of 36 subunits arranged as a hexamer of Hfq homo-hexamers (i.e. protofilaments in a 6X6 arrangement). The different fibrillar ultrastructures formed by Hfq and SmAP are presented and examined herein, with the overall goal of elucidating another similarity amongst the diverse members of the Sm protein family. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available