4.8 Article

Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0510876103

Keywords

calcium signaling; cardiomyocytes; FGF; receptor tyrosine kinase signaling; tyrosine phosphatases

Funding

  1. NIAMS NIH HHS [AR46504, R01 AR046504] Funding Source: Medline
  2. NIDDK NIH HHS [P01 DK57751, P01 DK057751] Funding Source: Medline

Ask authors/readers for more resources

Gain-of-function mutations in SHP-2/PTPN11 cause Noonan syndrome, a human developmental disorder. Noonan syndrome is characterized by proportionate short stature, facial dysmorphia, increased risk of leukemia, and congenital heart defects in approximate to 50% of cases. Congenital heart abnormalities are common in Noonan syndrome, but the signaling pathway(s) linking gain-of-function SHP-2 mutants to heart disease is unclear. Diverse cell types coordinate cardiac morphogenesis, which is regulated by calcium (Ca2+) and the nuclear factor of activated T-cells (NFAT). It has been shown that the frequency of Ca2+ oscillations regulates NFAT activity. Here, we show that in fibroblasts, Ca2+ oscillations in response to FGF-2 require the phosphatase activity of SHP-2. Conversely, gain-of-function mutants of SHP-2 enhanced FGF-2-mediated Ca2+ oscillations in fibroblasts and spontaneous Ca2+ oscillations in cardiomyocytes. The enhanced frequency of cardiomyocyte Ca2+ oscillations induced by a gain-of-function SHP-2 mutant correlated with reduced nuclear translocation and transcriptional activity of NFAT. These data imply that gain-of-function SHP-2 mutants disrupt the Ca2+ oscillatory control of NFAT, suggesting a potential mechanism for congenital heart defects in Noonan syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available