4.8 Article

Monitoring the direct and indirect damage of DNA bases and polynucleotides by using time-resolved infrared spectroscopy

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0506860103

Keywords

DNA damage; electron transfer; guanine radical cation

Ask authors/readers for more resources

The nucleotide 5'-dGMP and polynucleotide poly(dGdC)center dot poly(dGdC) have been irradiated by using a 200-fs, 200-nm laser pulses and spectrally characterized by using time-resolved infrared spectroscopy. Under the experimental conditions, 200-nm excitation generates both electronic excited states and radical cations through photoionization; the former decay rapidly to vibrationally hot ground state. By using infrared signatures we have been able to follow these processes, and at time scales of > 1 ns we observe an infrared marker band at 1,702 cm(-1) within both 5'-dGMP and the polynucleotide assigned to a photoionized product of guanine. This transient has also been reproduced through indirect chemistry through the reaction with photogenerated carbonate radical with 5'-dGMP. The ability to use time-resolved infrared spectroscopy in this way paves the way for developing solution-phase studies to investigate both direct and indirect radiation chemistry of DNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available