4.6 Article

Dielectric force and relative motion between two spherical particles in electrophoresis

Journal

LANGMUIR
Volume 22, Issue 4, Pages 1602-1608

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la052162k

Keywords

-

Ask authors/readers for more resources

When two particles close to each other are in electrophoretic motion, each particle is under the influence of the nonuniform electric field generated by the other particle. Two particles may attract or repel each other due to the dielectric force, depending on their positions in the nonuniform electric field. In this work, the dielectric interaction and the subsequent relative motion of the two arbitrarily oriented spherical particles are analyzed. The dielectric force is obtained by integrating the Maxwell stress. The result is valid for arbitrary orientations of the particles under the thin electrical-double-layer assumption. The magnitude of the dielectric force is compared to the so-called inertia-induced force, which shows that the dielectric force is normally much greater than the inertia-induced force. The relative velocity of particles is determined by the force balance between the dielectric force and the Stokes drag. The regions of attraction and repulsion are defined. It is shown that a pair of particles eventually aligns parallel to the externally applied electric field, except in the case where the two particles are initially oriented perpendicular to the electric field. A closed-form analytical solution is obtained for the particle trajectory by using the approximate expression for the dielectric force valid for not-too-closely located particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available