4.7 Article

Quantum optimal control of molecular isomerization in the presence of a competing dissociation channel

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 124, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2165201

Keywords

-

Ask authors/readers for more resources

The quantum optimal control of isomerization in the presence of a competing dissociation channel is simulated on a two-dimensional model. The control of isomerization of a hydrogen atom is achieved through vibrational transitions on the ground-state surface as well as with the aid of an excited-state surface. The effects of different competing dissociation channel configurations on the isomerization control are explored. Suppression of the competing dissociation dynamics during the isomerization control on the ground-state surface becomes easier with an increase in the spatial separation between the isomerization and dissociation regions and with a decrease in the dissociation channel width. Isomerization control first involving transfer of amplitude to an excited-state surface is less influenced by the dissociation channel configuration on the ground-state surface, even in cases where the excited-state surface allows for a moderate spreading of the excited wave packet.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available