4.6 Article

Modeling, simulation, and multi-objective optimization of an industrial hydrocracking unit

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 45, Issue 4, Pages 1354-1372

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie050423f

Keywords

-

Ask authors/readers for more resources

Hydrocracking is a petroleum refining process where cracking occurs simultaneously with hydrogenation to convert heavy petroleum feedstocks into desired lighter products. In this study, multi-objective optimization of an industrial hydrocracking unit has been performed for the first time, to find scope for further improvements and to provide a range of optimal solutions. The reactor model was simulated based on a discrete lumped model approach to kinetic modeling. The kinetic and product distribution parameters were fine-tuned using available industrial data. The real-coded elitist nondominated sorting genetic algorithm was used to carry out the multi-objective optimization study. The Pareto-optimal solutions for the hydrocracker unit are presented, and their significant features are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available