4.6 Article

Evidence for a novel mitochondria-to-nucleus signalling pathway in respiring cells lacking i-AAA protease and the ABC-transporter Mdl1

Journal

GENE
Volume 367, Issue -, Pages 74-88

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2005.09.044

Keywords

retrograde response; peptide export; Yme1; AAA protease

Ask authors/readers for more resources

Peptides generated upon degradation of mitochondrial proteins by various ATP-dependent proteases are continuously released from mitochondria raisin the intriguing possibility of a role of these peptides in interorganellar communication. Here.. we have determined genome wide transcript profiles of mutant yeast cells defective in mitochondrial peptide export. Deletion of YME1, coding for the i-AAA protease in the inner membrane, abolished peptide generation in the intermembrane space and led to the induction of nuclear genes with functions in mitochondrial gene expression and the biogenesis of the respiratory chain. On the other hand, deletion of MDL1, coding for an ABC-transporter involved in peptide export from the matrix space, only had minor effects on nuclear gene expression. It strengthened, however, the response in Delta yme1 cells suggesting a link between mitochondrial peptide export and nuclear gene expression. The response in Yme1-deficient cells depended on respiratory growth and was not observed in fermenting yeast cells. Inhibition of the F1FO-ATP synthase induced Delta yme1 responsive genes whereas inhibition of the respiratory chain or dissipation of the mitochondrial membrane potential resulted in their repression. These findings suggest the existence of a novel mitochondria-to-nucleus signalling pathway in respiring cells which allows the re-adjustment of the biogenesis of the respiratory chain in response to an altered activity of the F1FO-ATP synthase. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available