4.7 Article

Morphology control of sulfonated poly(ether ketone ketone) poly(ether imide) blends and their use in proton-exchange membranes

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 270, Issue 1-2, Pages 22-31

Publisher

ELSEVIER
DOI: 10.1016/j.memsci.2005.06.037

Keywords

poly(ether ketone ketone); poly(ether imide); polymer blend; proton-exchange membrane

Ask authors/readers for more resources

Polymer blends based on sulfonated poly(ether ketone ketone) (SPEKK) as the proton-conducting component and poly(ether imide) (PEI) as the second component were considered for proton-exchange membranes (PEMs). The PEI was added to improve the mechanical stability and lower the water swelling in the fuel cell environment. Membranes were cast from solution using N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc). The ternary, polymer/polymer/solvent, phase diagram was determined to provide guidance on how to control the morphology during solvent casting of blend membranes. For blends of SPEKK (ion-exchange capacity = 2 mequiv/g) with PEI as the minority component, the morphology consisted of dispersed particles of similar to 0.5-6 mu m. Larger particles were achieved by increasing the PEI content and/or lowering the casting temperature. High-temperature annealing after solution casting did not affect the morphology of blend membranes, due to the low mobility and compatibility of the two polymers. The possible use of SPEKK/PEI blends in PEMs is discussed in terms of existing theories of ion transport in polymers. (c) 2005 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available