4.6 Article

An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cul4-Ddb1 ubiquitin ligase in response to DNA damage

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 7, Pages 3753-3756

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C500464200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM067113] Funding Source: Medline

Ask authors/readers for more resources

The DNA replication licensing factor Cdt1 is degraded by the ubiquitin-proteasome pathway during S phase of the cell cycle, to ensure one round of DNA replication during each cell division and in response to DNA damage to halt DNA replication. Constitutive expression of Cdt1 causes DNA re-replication and is associated with the development of a subset of human non-small cell-lung carcinomas. In mammalian cells, DNA damage-induced Cdt1 degradation is catalyzed by the Cul4-Ddb1-Roc1 E3 ubiquitin ligase. We report here that overexpression of the proliferating cell nuclear antigen (PCNA) inhibitory domain from the CDK inhibitors p21 and p57, but not the CDK-cyclin inhibitory domain, blocked Cdt1 degradation in cultured mammalian cells after UV irradiation. In vivo soluble Cdt1 and PCNA co-elute by gel filtration and associate with each other physically. Silencing PCNA in cultured mammalian cells or repression of pcn1 expression in fission yeast blocked Cdt1 degradation in response to DNA damage. Unexpectedly, deletion of Ddb1 in fission yeast cells also accumulated Cdt1 in the absence of DNA damage. We suggest that the Cul4-Ddb1 ligase evolved to ubiquitinate Cdt1 during normal cell growth as well as in response to DNA damage and a separate E3 ligase, possibly SCFSkp2, evolved to either share or take over the function of Cdt1 ubiquitination during normal cell growth and that PCNA is involved in mediating Cdt1 degradation by the Cul4-Ddb1 ligase in response to DNA damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available