4.8 Article

c-Myc phosphorylation is required for cellular response to oxidative stress

Journal

MOLECULAR CELL
Volume 21, Issue 4, Pages 509-519

Publisher

CELL PRESS
DOI: 10.1016/j.molcel.2006.01.009

Keywords

-

Ask authors/readers for more resources

Aside from the well-established roles of c-Myc in the regulation of cell cycle, differentiation, and apoptosis, a recent picture is beginning to emerge linking c-Myc to the regulation of metabolic pathways. Here, we define a further function for c-Myc in determining cellular redox balance, identifying glutathione (GSH) as the leading molecule mediating this process. The link between c-Myc and GSH is gamma-glutamyl-cysteine synthetase (gamma-GCS), the rate-limiting enzyme catalyzing GSH biosynthesis. Indeed, c-Myc transcriptionally regulates gamma-GCS by binding and activating the promoters of both gamma-GCS heavy and light subunits. Exposure to H2O2 enhances c-Myc recruitment to gamma-GCS regulatory regions through ERK-dependent phosphorylation. Phosphorylation at Ser-62 is required for c-Myc recruitment to gamma-GCS promoters and determines the cellular response to oxidative stress induced by different stimuli. Thus, the c-Myc phosphorylation-dependent activation of the GSH-directed survival pathway can contribute to oxidative stress resistance in tumor cells, which generally exhibit deregulated c-Myc expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available