4.8 Article

Glassy behavior of light

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.065702

Keywords

-

Ask authors/readers for more resources

We study the nonlinear dynamics of a multimode random laser using the methods of statistical physics of disordered systems. A replica-symmetry breaking phase transition is predicted as a function of the pump intensity. We thus show that light propagating in a random nonlinear medium displays glassy behavior; i.e., the photon gas has a multitude of metastable states and a nonvanishing complexity, corresponding to mode-locking processes in random lasers. The present work reveals the existence of new physical phenomena, and demonstrates how nonlinear optics and random lasers can be a benchmark for the modern theory of complex systems and glasses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available