4.8 Article

Competing periodicities in fractionally filled one-dimensional bands

Journal

PHYSICAL REVIEW LETTERS
Volume 96, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.96.076801

Keywords

-

Ask authors/readers for more resources

We present a variable temperature scanning tunneling microscopy and spectroscopy study of the Si(553)-Au atomic chain reconstruction. This quasi-one-dimensional system undergoes at least two charge density wave (CDW) transitions, which can be attributed to electronic instabilities in the fractionally filled 1D bands of the high-symmetry phase. Upon cooling, Si(553)-Au first undergoes a single-band Peierls distortion, resulting in period doubling along the chains. This Peierls state is ultimately overcome by a competing x3 CDW, which is accompanied by a x2 periodicity in between the chains. These locked-in periodicities indicate small charge transfer between the nearly 1/2-filled and 1/4-filled bands. The presence and the mobility of atomic-scale dislocations in the x3 CDW state indicates the possibility of manipulating phase solitons carrying a (spin, charge) of (1/2,+/- e/3) or (0,+/- 2e/3).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available