4.5 Article

Drug encapsulation using supercritical fluid extraction of emulsions

Journal

JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 95, Issue 3, Pages 667-679

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1002/jps.20555

Keywords

poly(lactic/glycolic) acid; polymeric drug carrier; encapsulation nanoparticles; microparticles; emulsion; supercritical fluids; controlled release

Ask authors/readers for more resources

The current work was aimed at evaluating anew method, supercritical fluid extraction of emulsions (SFEE), for the production of composite (e.g., polymer-drug) micro- and nanoparticles, intended for application in sustained-release drug delivery formulations. Using the proposed method, composite particles were obtained, both in a continuous or batch mariner by supercritical carbon dioxide extraction of oil-in-water (o/w) emulsions. Model drugs indomethacin and ketoprofen and biodegradable polymers poly(lactic/glycolic) acid and Eudragit RS were used in order to demonstrate the effectiveness of the SFEE process for producing these particles. Stable aqueous suspensions of composite micro and nanoparticles, having sizes ranging between 0.1 and 2 mu m were consistently obtained. Emulsion droplet diameter was found to be the major size control parameter. Other parameters investigated included polymer and drug concentrations in solvent and emulsion solvent fraction. The residual solvent content in the particle suspension obtained was consistently below 50 ppm. Standard dissolution tests were used to observe the sustained release phenomenon of the composite particles. The dissolution profile vias characterized in terms of the intrinsic dissolution kinetic coefficients taking into account the specific surface area and solubility of the particles. It was observed that the kinetic coefficient parameter for encapsulated drugs was reduced by 2-4 orders of magnitude when compared to the unprocessed drug particles. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available