4.6 Article

Low-dimensional electronic states at silicon surfaces

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 82, Issue 3, Pages 431-438

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-005-3365-3

Keywords

-

Ask authors/readers for more resources

Self-assembled atomic chains can be triggered at stepped Si(111) surfaces by adding sub-monolayer amounts of metals, such as gold, silver, platinum, alkali metals, alkaline earths, and rare earths. A common feature of all these structures is the honeycomb chain, a graphitic strip of Si atoms at the step edge that is lattice matched in the direction parallel to the edge but completely mismatched perpendicular to it. This honeycomb chain drives one-dimensional surface reconstructions even on the flat Si(111) surface, breaking its three-fold symmetry. Particularly interesting are metallic chain structures, such as those induced by gold. The Au atoms are locked rigidly to the Si substrate but the electrons near the Fermi level completely decouple from the substrate because they lie in the band gap of silicon. The electronic structure of one-dimensional electrons is predicted to be qualitatively different from that of higher dimensions, since electrons cannot avoid each other when moving along the same line. The single-electron picture has to be abandoned, making way for collective excitations, such as spinons and holons, where the spins and charges of electrons become separated. Although such excitations have yet to be confirmed definitively, the band structure seen in angle-resoled photoemission exhibits a variety of unusual features, such as a fractional electron count and a doublet of nearly half-filled bands. Chains of tunable spins can be created with rare earths. The dimensionality can be controlled by adjusting the step spacing with intra- and inter-chain coupling ratios from 10 : 1 to > 70 : 1. Thus, metal-induced chain structures on stepped silicon provide a versatile class of low-dimensional materials for approaching the one-dimensional limit and exploring the exotic electronic states predicted for one dimension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available