4.5 Article

Tissue specificity of nonlinear dynamics in baseline MRI

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 55, Issue 3, Pages 626-632

Publisher

WILEY
DOI: 10.1002/mrm.20817

Keywords

baseline fMRI; tissue specificity; physiologic correction; nonlinear dynamics; functional connectivity

Ask authors/readers for more resources

In this work, recent advances in the field of nonlinear dynamics (NLD) were applied to fMRI data to examine the spatio-temporal properties of BOLD resting state fluctuations. Five human subjects were imaged during resting state (visual fixation) at 3T using single-shot gradient echo planar imaging (EPI). Respiration and cardiac signals were concurrently recorded for retrospectively removing fluctuations due to these physiologic activities. Patterns of singularity in the complex plane (PSC) and Lempel-Ziv complexity (LZ) were used to study the deterministic nonlinearity in resting state fMRI data. The results show that there is greater nonlinearity (higher PSC) and determinism (lower LZ) in gray matter compared to white matter and CSF. In addition, the removal of respiratory and cardiac pulsations decreases the nonlinearity and determinism but does not alter the relative difference between gray matter and white matter. Therefore, our results demonstrate that determinism and nonlinearity in the fMRI data are tissue-specific, suggesting that they reflect native physiologic and metabolic fluctuations and are not a result of physiologic artifacts due to respiration and cardiac pulsation. Magn Reson Med 55:626-632, 2006. (c) 2006 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available