4.6 Article

Pore formers promoted release of an antifungal drug from functionalized polyurethanes to inhibit Candida colonization

Journal

JOURNAL OF APPLIED MICROBIOLOGY
Volume 100, Issue 3, Pages 615-622

Publisher

WILEY
DOI: 10.1111/j.1365-2672.2005.02801.x

Keywords

albumin; biofilms; Candida; fluconazole; polyethylenglycol; polyurethanes; medical devices

Ask authors/readers for more resources

Aims: As a preventive strategy to inhibit fungal biofilm formation on medical devices, we planned experiments based on polyurethane loading with fluconazole plus pore-former agents in order to obtain a promoted release of the antifungal drug. Methods and results: Different functional groups including carboxyl, hydroxyl, primary and tertiary amino groups, were introduced in polyurethanes. Fluconazole was adsorbed in higher amounts by the most hydrophilic polymers and its release was influenced by the degree of polymer swelling in water. The entrapping in the polymer of polyethylenglycol as a pore former significantly improved the fluconazole release while the entrapping of the higher molecular weight porogen albumin resulted in a controlled drug release and in an improved antifungal activity over time. Conclusions: Among the tested in vitro models, best results were achieved with an hydrophobic polymer impregnated with 25% (w/w) albumin and fluconazole which inhibited Candida albicans growth and biofilm formation on polymeric surfaces up to 8 days. Significance and Impact of the study: The combined entrapping in polymers of pore formers and an antifungal drug and the consequent controlled release over time is a novel, promising approach in the development of medical devices refractory to fungal colonization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available