4.7 Article

Structural basis for DNA-cleaving activity of resveratrol in the presence of Cu(II)

Journal

BIOORGANIC & MEDICINAL CHEMISTRY
Volume 14, Issue 5, Pages 1437-1443

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2005.09.070

Keywords

resveratrol; polyphenol; antioxidant; DNA oxidative damage

Ask authors/readers for more resources

Resveratrol (1, 3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes and other food products, is known as an antioxidant and cancer chemopreventive agent. However, 1 was shown to induce genotoxicity through a high frequency of micronucleus and sister chromatid exchange in vitro and DNA-cleaving activity in the presence of Cu(II). The present study was designed to explore the structure-activity relationship of 1 in DNA strand scission and to characterize the substrate specificity for Cu(II) and DNA binding. When pBR322DNA was incubated with I or its analogues differing in the number and positions of hydroxyl groups in the presence of Cu(II), the ability of 4-hydroxystilbene analogues to induce DNA strand scission is much stronger than that of 3-hydroxy analogues. The high binding affinity with both Cu(II) and DNA was also observed by 4-hydroxystilbene analogues. The reduction of Cu(II) which is essential for activation of molecular oxygen proceeded by addition of 1 to the solution of the Cu(II)-DNA complex, while such reduction was not observed with the addition of isoresveratrol, in which the 4-hydroxy group of 1 is changed to the 3-position. The results show that the 4-hydroxystilbene structure of 1 is a major determinant of generation of reactive oxygen species that was responsible for DNA strand scission. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available