4.3 Review

Role of potassium in regulating blood flow and blood pressure

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00491.2005

Keywords

endothelium-derived hyperpolarization factor; Na+-K+ -ATPase; potassium channels

Categories

Ask authors/readers for more resources

Unlike sodium, potassium is vasoactive; for example, when infused into the arterial supply of a vascular bed, blood flow increases. The vasodilation results from hyperpolarization of the vascular smooth muscle cell subsequent to potassium stimulation by the ion of the electrogenic Na+-K+ pump and/or activating the inwardly rectifying Kir channels. In the case of skeletal muscle and brain, the increased flow sustains the augmented metabolic needs of the tissues. Potassium ions are also released by the endothelial cells in response to neurohumoral mediators and physical forces (such as shear stress) and contribute to the endothelium-dependent relaxations, being a component of endothelium-derived hyperpolarization factor-mediated responses. Dietary supplementation of potassium can lower blood pressure in normal and some hypertensive patients. Again, in contrast to NaCl restriction, the response to potassium supplementation is slow to appear, taking similar to 4 wk. Such supplementation reduces the need for antihypertensive medication. Salt-sensitive hypertension responds particularly well, perhaps, in part, because supplementation with potassium increases the urinary excretion of sodium chloride. Potassium supplementation may even reduce organ system complications (e.g., stroke).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available