4.7 Article

Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 57, Issue 4, Pages 953-960

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erj081

Keywords

accession; Arabidopsis; mapping; naturally-occurring variation; potassium; quantitative trait loci

Categories

Ask authors/readers for more resources

Naturally-occurring variation in K+ concentrations between plant genotypes is potentially exploitable in a number of ways, including altering the relationship between K+ accumulation and growth, enhancing salinity resistance, or improving forage quality. However, achieving these requires greater insight into the genetic basis of the variation in tissue K+ concentrations. To this end, K+ concentrations were measured in the shoots of 70 Arabidopsis thaliana accessions and a Cape Verdi Island/Landsberg erecta recombinant inbred line (RIL) population. The shoot K+ concentrations expressed on the basis of fresh matter (KFM) or dry matter (KDM) were both broadly and normally distributed as was the shoot dry matter content per unit fresh weight (DMC). Using the data from the RILs, four quantitative trait loci (QTL) were identified for KFM and three for KDM. These were located on chromosomes 2, 3, 4, and 5. Two of the QTLs for KFM overlapped with those for KDM. None of these QTLs overlapped with those for fresh weight or dry weight, but the QTL for KDM located on chromosome 3 overlapped with one for DMC. In silico analysis was used to identify known or putative K+ and cation transporter genes whose loci overlapped with the QTLs. In most cases, multiple genes were identified and the possible role of their gene products in determining shoot K+ concentrations is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available