4.6 Article

Automated extraction of backbone deuteration levels from amide H/2 H mass spectrometry experiments

Journal

PROTEIN SCIENCE
Volume 15, Issue 3, Pages 583-601

Publisher

WILEY
DOI: 10.1110/ps.051774906

Keywords

amide H/H-2 exchange; MALDI-TOF; deconvolution; back exchange correction

Funding

  1. NIDDK NIH HHS [T32 DK007233] Funding Source: Medline
  2. NIGMS NIH HHS [R01GM70996, R01 GM070996] Funding Source: Medline

Ask authors/readers for more resources

A Fourier deconvolution method has been developed to explicitly determine the amount of backbone amide deuterium incorporated into protein regions or segments by hydrogen/deuterium (H/D) exchange with high-resolution mass spectrometry. Determination and analysis of the level and number of backbone amide exchanging in solution provide more information about the solvent accessibility of the protein than do previous centroid methods, which only calculate the average deuterons exchanged. After exchange, a protein is digested into peptides as a way of determining the exchange within a local area of the protein. The mass of a peptide upon deuteration is a sum of the natural isotope abundance, fast exchanging side-chain hydrogens (present in MALDI-TOF H/H-2 data) and backbone amide exchange. Removal of the components of the isotopic distribution due to the natural isotope abundances and the fast exchanging side-chains allows for a precise quantification of the levels of backbone amide exchange, as is shown by an example from protein kinase A. The deconvoluted results are affected by overlapping peptides or inconsistent mass envelopes, and evaluation procedures for these cases are discussed. Finally, a method for determining the back exchange corrected populations is presented, and its effect on the data is discussed under various circumstances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available