4.4 Article

Climate change and the epidemiology of protostrongylid nematodes in northern ecosystems:: Parelaphostrongylus adocoilei and Protostrongylus stilesi in Dall's sheep (Ovis d. dalli)

Journal

PARASITOLOGY
Volume 132, Issue -, Pages 387-401

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0031182005009145

Keywords

protostrongylid; parasite; epidemiology; climate change; Parelaphostrongylus odocoilei; Protostrongylus stilesi; Ovis dalli dalli; Deroceras leave

Categories

Ask authors/readers for more resources

We describe the epidemiology of the protostrongylid parasites Parelaphostrongylus odocoilei and Protostrongylus stilesi in Dall's sheep (Ovis dalli dalli) from the Mackenzie Mountains, Northwest Territories, Canada (65 degrees N; 128 degrees,V). Peak numbers of I st-stage larvae of both parasites were shed by Dall's sheep on their winter range from March until May. In larval development experiments in the Mackenzie Mountains, peak numbers of infective 3rd-stage larvae of P. odocoilei were available in gastropod intermediate hosts in August-September. For both protostrongylids, the majority of transmission likely Occurs on the winter range, with infection of gastropods when they emerge from hibernation in spring, and infection Of Dall'S Sheep upon their return in fall. We validated a degree-day model for temperature-dependent development of larval P. odocoilei in gastropods, and applied degree-day models to describe and predict spatial and temporal patterns in development of P. odocoilei and P. stilesi in northern North America. Temperature-dependent larval development may currently limit northward range expansion of P. odocoilei into naive populations of Dall's sheep in the Arctic, but climate warming may soon eliminate Such constraints. In Subarctic regions where both P. odocoilei and P. stilesi are endemic, the length of the parasite 'growing season' (when temperatures were above the threshold for larval development) and amount of warming available for parasite development has increased over the last 50 years. Further climate warming and extension of the seasonal window for transmission may lead to amplification of parasite populations and disease Outbreaks in host populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available