4.2 Article

Effect of 5-aza-2′-deoxycytidine (Dacogen) on covalent histone modifications of chromatin associated with the ε-, γ-, and β-globin promoters in Papio anubis

Journal

EXPERIMENTAL HEMATOLOGY
Volume 34, Issue 3, Pages 339-347

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.exphem.2005.12.010

Keywords

-

Ask authors/readers for more resources

Objective. Treatment with the DNA demethylating drug 5-aza-2'-deoxycytidine (Dacogen; DAC) increased fetal hemoglobin and F cells to therapeutically significant levels in patients with sickle cell disease. To gain more insight into the mechanism of action of this drug and to increase our understanding of the relationship between DNA methylation and chromatin structure, we have determined the effect of DAC on covalent histone modifications of chromatin associated with the epsilon, gamma-, and beta-globin promoters in purified bone marrow erythroid cells of four baboons (P anubis) pre- and posttreatment. Results. Fetal hemoglobin increased from 6.45% +/- 1.75% in pretreatment samples to 62.1 % +/- 7.94% following DAC. DNA methylation of three CpG sites within the F-globin promoter and 5 CpG sites within the gamma-globin promoter decreased more than 50% following DAC treatment. Levels of RNA polymerase II, acetyl-histone H3, acetyl-histone H4, dimethyl-histone H3 (lys4), dimethyl-histone H3 (lys36), and dimethyl-histone H3 (lys79) associated with the epsilon-, gamma-, and beta-globin promoters were determined by chromatin immunoprecipitation of formaldehyde-fixed chromatin followed by real-time PCR. Dacogen treatment increased the association of RNA polymerase II, acetyl-histone H3, and acetyl-histone H4 with the gamma-globin promoter but did not significantly affect the association of dimethyl-histone H3 (lys4), dimethyl-histone H3 (lys36), and dimethyl-histone H3 (lys79) with the epsilon-, gamma-, and beta-globin gene promoters. Conclusion. These experiments illustrate the usefulness of the baboon model to investigate the mechanism of pharmacologic reactivation of fetal hemoglobin synthesis at the molecular level. (c) 2006 International Society for Experimental Hematology. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available