4.1 Article

The expression patterns of deubiquitinating enzymes, USP22 and Usp22

Journal

GENE EXPRESSION PATTERNS
Volume 6, Issue 3, Pages 277-284

Publisher

ELSEVIER
DOI: 10.1016/j.modgep.2005.07.007

Keywords

deubiquitinating enzyme; deubiquitination; DUB; gene expression; in situ hybridization; mouse embryonic stage; ubiquitination; USP22

Ask authors/readers for more resources

Deubiquitinating enzymes regulate a number of cellular mechanisms including pre-implantation, growth and differentiation, oncogenesis, cell cycle progression, transcriptional activation, and signal transduction. In this study, we have identified a novel human deubiquitinating enzyme gene, USP22, and its mouse homologue, Usp22. They encode 525 amino acids (approximate MW: 60 kDa) and contains Cys, Asp (I), His and Asp/Asn (II), the highly conserved domains of the UBP family of deubiquitinating enzymes. The biochemical assay revealed that they have deubiquitinating enzyme activity. Northern blot analysis for USP22 showed moderate expression in various organs including human heart and skeletal muscle, and weak expression in lung and liver. However, Usp22 is expressed strongly in brain and weakly in other organs. We investigated the expression level of Usp22 mRNA and the localization during implantation and early pregnancy by in situ hybridization. Interestingly, Northern blot analysis showed the strong expression of Usp22 between embryonic days E10.5 and E12.5. Whole mount in situ hybridization staining revealed that Usp22 was expressed in the midbrain, forebrain, hindbrain and dorsal root ganglia of embryos at E12.5. Embryos at E12.5 showed the pronounced expression of Usp22 during the early embryonic development, although its expression was not detectable in the gut, liver and heart. (C) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available