4.5 Article

The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells

Journal

BIOCHEMICAL JOURNAL
Volume 394, Issue -, Pages 449-457

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20050591

Keywords

Claudin-1; E-cadherin; Slug; Snail; tight junction; tumour

Ask authors/readers for more resources

Claudin-1 is an integral membrane protein component of tight junctions. The Snail family of transcription factors are repressors that play a central role in the epithelial-mesenchymal transition, a process that occurs during cancer progression. Snail and Slug members are direct repressors of E-cadherin and act by binding to the specific E-boxes of its proximal promoter. In the present study, we demonstrate that overexpression of Slug or Snail causes a decrease in transepithelial electrical resistance. Overexpression of Slug and Snail in MDCK (Madin-Darby canine kidney) cells down-regulated Claudin-1 at protein and mRNA levels. In addition, Snail and Slug are able to effectively repress human Claudin-1-driven reporter gene constructs containing the wildtype promoter sequence, but not those with mutations in two proximal E-box elements. We also demonstrate by band-shift assay that Snail and Slug bind to the E-box motifs present in the human Claudin-1 promoter. Moreover, an inverse correlation in the levels of Claudin-1 and Slug transcripts were observed in breast cancer cell lines. E-box elements in the Claudin-1 promoter were found to play a critical negative regulatory role in breast cancer cell lines that expressed low levels of Claudin-1 transcript. Significantly, in invasive human breast tumours, high levels of Snail and Slug correlated with low levels of Claudin-1 expression. Taken together, these results support the hypothesis that Claudin-1 is a direct downstream target gene of Snail family factors in epithelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available