4.6 Article

Inhibition of receptor binding stabilizes newcastle disease virus HN and F protein-containing complexes

Journal

JOURNAL OF VIROLOGY
Volume 80, Issue 6, Pages 2894-2903

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.80.6.2894-2903.2006

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [R01 AI030572, R21 AI030572, AI 30572] Funding Source: Medline

Ask authors/readers for more resources

Receptor binding of paramyxovirus attachment proteins and the interactions between attachment and fusion (F) proteins are thought to be central to activation of the F protein activity; however, mechanisms involved are unclear. To explore the relationships between Newcastle disease virus (NDV) HN and F protein interactions and HN protein attachment to sialic acid receptors, HN and F protein-containing complexes were detected and quantified by reciprocal coimmunoprecipitation from extracts of transfected avian cells. To inhibit HN protein receptor binding, cells transfected with HN and F protein cDNAs were incubated with neuraminidase from the start of transfection. Under these conditions, no fusion was observed, but amounts of HN and F protein complexes increased twofold over amounts detected in extracts of untreated cells. Stimulation of attachment by incubation of untransfected target cells with neuraminidase-treated HN and F protein-expressing cells resulted in a twofold decrease in amounts of HN and F protein complexes. In contrast, high levels of complexes containing HN protein and an uncleaved F protein (F-K11SQ) were detected, and those levels were unaffected by neuraminidase treatment of cell monolayers or by incubation with target cells. These results suggest that HN and F proteins reside in a complex in the absence of receptor binding. Furthermore, the results show that not only receptor binding but also F protein cleavage are necessary for disassociation of the HN and F protein-containing complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available