4.7 Article

The representation of perceived angular size in human primary visual cortex

Journal

NATURE NEUROSCIENCE
Volume 9, Issue 3, Pages 429-434

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1641

Keywords

-

Categories

Funding

  1. NEI NIH HHS [F32 EY015342, R01 EY-015261] Funding Source: Medline

Ask authors/readers for more resources

Two objects that project the same visual angle on the retina can appear to occupy very different proportions of the visual field if they are perceived to be at different distances. What happens to the retinotopic map in primary visual cortex (V1) during the perception of these size illusions? Here we show, using functional magnetic resonance imaging (fMRI), that the retinotopic representation of an object changes in accordance with its perceived angular size. A distant object that appears to occupy a larger portion of the visual field activates a larger area in V1 than an object of equal angular size that is perceived to be closer and smaller. These results demonstrate that the retinal size of an object and the depth information in a scene are combined early in the human visual system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available